

Wave Chaos and Coupling to EM Structures

Students: Sameer Hemmady, James Hart,
Xing Zheng, Chris Bertrand,
Michael Johnson
Faculty: Steve Anlage, Tom Antonsen
and Ed Ott

Funded by MURI (AFOSR)

including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	arters Services, Directorate for Infor	rmation Operations and Reports	, 1215 Jefferson Davis	Highway, Suite 1204, Arlington
1. REPORT DATE JUL 2006 2. REPORT TYPE N/A			3. DATES COVERED -		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER				
Wave Chaos and C	5b. GRANT NUMBER				
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Institute for Research in Electronics Applied Physics				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILAPPROVED for publ	LABILITY STATEMENT ic release, distributi	on unlimited			
13. SUPPLEMENTARY NO The original docum	otes nent contains color i	mages.			
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	OF PAGES 27	RESPONSIBLE PERSON

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

Electromagnetic Coupling in Computer Circuits

Schematic

- What can be said about coupling without solving in detail the complicated EM problem?
- Statistical description!

- Coupling of external radiation to computer circuits is a complex process:
 - apertures resonant cavities transmission lines circuit elements

Outline

- Part I: Frequency Domain
 - Extracting the universal impedance and scattering statistics
 - Predictions and tests
- Part II: Time Domain
 - Model
 - Predictions

Part I:

Frequency Domain

Z and S-Matrices What is S_{ij} ?

N ports

- voltages and currents,
- incoming and outgoing waves

Z matrix

current

$$\begin{pmatrix} V_1 \\ V_2 \\ \vdots \\ V_N \end{pmatrix} = \quad \boldsymbol{Z} \quad \begin{pmatrix} I_1 \\ I_2 \\ \vdots \\ I_2 \end{pmatrix}$$

voltage

 $V_N \rightarrow V_N$, I_N $V_N \leftarrow S = (Z + Z_0)^{-1}(Z - Z_0)$ $S = (Z + Z_0)^{-1}(Z - Z_0)$

inc.

refl.

N- Port

System

• Details depend very

parameters.

sensitively on unknown

Statistical Model of Z Matrix

$$\underline{\underline{Z}}(\omega) = -\frac{j}{\pi} \sum_{n} \underline{\underline{R}}_{R}^{1/2}(\omega_{n}) \frac{\underline{w}_{n} \underline{w}_{n}^{T} \Delta \omega_{n}^{2}}{\omega^{2} (1 - jQ^{-1}) - \omega_{n}^{2}} \underline{\underline{R}}_{R}^{1/2}(\omega_{n})$$

Z = MxM matrix

R = MxM radiation resistance matrix

 $\Delta \omega_n^{=R} = \text{Mean spectral spacing}$

Q = Quality factor

 ω_n^2 = Random Spectrum from RMT

 $\underline{W}_n = \mathbf{M}$ vector of Gaussian random variables

$$\left\langle \underline{w}_{n}\underline{w}_{n}^{T}\right\rangle = \underline{1}$$

Radiation Impedance

Universal Properties of Impedance

$$\underline{\xi} = \underline{\underline{R}}_{R}^{-1/2} (\underline{\underline{Z}} - j\underline{\underline{X}}_{R}) \underline{\underline{R}}_{R}^{-1/2}$$

- ξ is universal and obtainable from Random Matrix Theory.
- This applies for (λ/L) small.

Importance of Normalization

Normalized

Raw Data

Past Results

- Predictions for statistics of S and Z matrices.
- Tests of predictions against numerical solutions of Maxwell's equations.
- Tests of predictions against laboratory experiments.

Predictions Tested

- M=1
 - PDF's of normalized impedances and scattering coefficients as a funct. of loss.
- M=2
 - Statistics of normalized 2x2 impedance and scattering matrices as a funct. of loss.
 - Variance ratios as a funct. of loss [also Fiachetti and Michielsen, Elect. Lett. '03].

$$VR_{Z} = \frac{Var[Z_{12}]}{\sqrt{Var[Z_{11}]Var[Z_{22}]}}$$

Some Predictions Not Yet Tested

- Situations where reciprocity does not apply
 - Magnetized ferrite → different statistics
- Situations where off-diagonal elements of \mathbf{Z}_{R} are significant.

Some Predictions Not Yet **Tested** (continued)

• M>2: E.g.,

reciprocal
$$\frac{2}{\left|S_{ij}\right|^{2}}$$
, $i = j$ $\left|\left|S_{ij}\right|^{2}\right| = \frac{1}{M+1}$, $i \neq j$ $\left|\left|\left|S_{ij}\right|^{2}\right| = \frac{1}{M}$

$$\left\langle \left| S_{ij} \right|^2 \right\rangle = \frac{1}{M}$$

Part II.

Time Domain

Time Domain Model

Frequency Domain

 w_n - Guassian Random variables

$$Z(\omega) = -\frac{j\omega}{\pi} \sum_{n} \frac{R_{R}(\omega_{n})}{\omega_{n}} \frac{\Delta \omega_{n}^{2} w_{n}^{2}}{\omega^{2} (1 - jQ^{-1}) - \omega_{n}^{2}} \frac{\omega_{n} - \text{random spectrum}}{\omega_{n}}$$

Time Domain

$$\left(\frac{d^2}{dt^2} + 2v_n \frac{d}{dt} + \omega_n^2\right) V_n(t) = -\frac{1}{\pi} \frac{R_R(\omega_n) \Delta \omega_n^2 w_n^2}{\omega_n} \frac{d}{dt} I(t)$$

$$V(t) = \sum_{n} V_n(t) \qquad v_n = \frac{\omega_n}{Q}$$

Incident and Reflected Pulses for One Realization

Decay of Port Voltage - Lossless Case

- One Port with an Incident Pulse: $\langle V^2(t) \rangle \approx 1/t^{5/2}$
- Two Ports Excited Through Port 1,
 - a) all ports matched:
 - b) Port 1 matched Port 2 strongly mismatched

$$\langle V_1^2(t)\rangle = 2\langle V_2^2(t)\rangle \approx 1/t^3$$

$$\langle V_1^2(t) \rangle \approx 1/t^{5/2}$$

 $\langle V_2^2(t) \rangle \approx 1/t^{3/2}$

• N Ports Excited Through $\langle V_1^2(t) \rangle = 2 \langle V_{i\neq 1}^2(t) \rangle \approx 1/t^{(4+N)/2}$ Port 1, all ports matched:

Simulations of Average Decay

Quasi-Stationary Process

 $< u(t_1)u(t_2) > 0$

Normalized Voltage $u(t)=V(t)/\langle V^2(t)\rangle^{1/2}$

0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 -0.02 4 10⁻⁷ 2 10⁻⁷ 8 10⁻⁷ 6 10⁻⁷ 1 10⁻⁶ 0 time [sec]

2-time Correlation Function (Matches initial pulse shape)

Time Reversal Attack (TRA)

Issues: • 'Fidelity' under study

• Magnetized ferrite: breaks time reversal symmetry

- Corrections for deviations from RMT that occur when (λ/L) << 1 is not well satisfied
- Scars "Anomalous" hot spots
- Networks formed by transmission line links
- Statistical aspects of coupling of pulsed signals

Publications

- 1. S. Hemmady, X. Zheng, E. Ott, T. Antonsen, and S. Anlage, Universal Impedance Fluctuations in Wave Chaotic Systems, Phys. Rev. Lett. 94, 014102 (2005).
- S. Hemmady, X. Zheng, T. Antonsen, E. Ott, and S. Anlage, Universal Statistics of the Scattering Coefficient of Chaotic Microwave Cavities, Phys. Rev. E 71
- 3. X. Zheng, T. Antonsen, E. Ott, Statistics of Impedance and Scattering Matrices in Chaotic Microwave Cavities: Single Channel Case, Electromagnetics 26, 3 (2006).
- 4. X. Zheng, T. Antonsen, E. Ott, Statistics of Impedance and Scattering Matrices of Chaotic Microwave Cavities with Multiple Ports, Electromagnetics 26, 37 (2006).
- 5. X. Zheng, S. Hemmady, T. Antonsen, S. Anlage, and E. Ott, Characterization of Fluctuations of Impedance and Scattering Matrices in Wave Chaotic Scattering, Phys. Rev. E 73, 046208 (2006).
- 6. S. Hemmady, X. Zheng, T. Antonsen, E. Ott, S. Anlage, Universal Properties of 2-Port Scattering, Impedance and Admittance Matrices of Wave Chaotic Systems, Phys. Rev. E. submitted.
- 7. S. Hemmady, X. Zheng, T. Antonsen, E. Ott and S. Anlage, Aspects of the Scattering and Impedance Properties of Chaotic Microwave Cavities, Acta Physica Polonica A <u>109</u>, 65 (2006).

Photo by Tom Antonsen

Part III

Open Problems

More Complexity in the Scatterer

Features:

Ray splitting Losses

Additional complications can be added

- Can be addressed
 - -theoretically
 - -numerically
 - -experimentally

Role of Scars?

- Eigenfunctions that do not satisfy the random plane wave assumption
- Scars are not treated by either random matrix or chaotic eigenfunction theory

Bow-Tie with diamond scar

Ref: Antonsen et al., Phys. Rev E 51, 111 (1995).

Electromagnetic Topology andWave Graphs

Electromagnetic Topology BLT Equations

O. Hul, et al., Phys. Rev. E 69, 056205 (2004). "Experimental simulation of quantum graphs by microwave networks"